Access and Connection ## equity ## Recommendation To enrich the analysis, consideration could be given to off-road walking and cycling paths, which provide a vital part of the walking and cycling network ## Metric - Slope of road | Description Spatial coverage Spatial application Calculation methodology | Interpolate segme 2. Obtain 5m Digit | SW t suitable for l d segment da segment ever nts to surface | link-based analysi
ata
ry 20m | | | | | | | | | | | |--|--|--|-------------------------------------|--------------------------------------|--------------|--|--|---------|---------|---------|----------|-----------|------| | Spatial application | Obtain refined roa 1. Split each road s Interpolate segme 2. Obtain 5m Digit | t suitable for l
d segment da
segment ever
nts to surface | ata
ry 20m | is based on the | road network | | | | | | | | | | Calculation | Obtain refined road: 1. Split each road: Interpolate segme 2. Obtain 5m Digit | d segment da
segment ever | ata
ry 20m | is based on the | road network | | | | | | | | | | | Split each road s Interpolate segme Obtain 5m Digit | segment ever | ry 20m | | | | | | | | | | | | methodology | Interpolate segme 2. Obtain 5m Digit | nts to surface | | | | | | | | | | | | | | 2. Obtain 5m Digit | | ` | 1. Split each road segment every 20m | | | | | | | | | | | | | | Interpolate segments to surface | | | | | | | | | | | | | 3 Get each 20m si | 2. Obtain 5m Digital Elevation Model (DEM) | | | | | | | | | | | | | | 3. Get each 20m segment start and end elevation | | | | | | | | | | | | | | | Calculate slope in degree | | | | | | | | | | | | | | | 4. Use 20m segment length with start and end elevation to calculate slope degree | | | | | | | | | | | | | | | Slope = atan (abs(End point elevation - Start point elevation) / length)) x (180/pi) | | | | | | | | | | | | | | | abs: return absolute value | | | | | | | | | | | | | | | atan: return the arctangent (in radians) of a number Data representation 5. Assign colour based on the classification below Unit: Degree (°) Walking | < 3 | 3.1 - 5 | 5.1 - 7 | 7.1 – 10 | 10.1 - 12 | > 12 | | | | | | | | | | Cycling | < 2 | | 2.1 - 5 | 5.1 - 10 | | > 10 | | | | | | | | |